An Inexact Newton-like conditional gradient method for constrained nonlinear systems
نویسنده
چکیده
In this paper, we propose an inexact Newton-like conditional gradient method for solving constrained systems of nonlinear equations. The local convergence of the new method as well as results on its rate are established by using a general majorant condition. Two applications of such condition are provided: one is for functions whose the derivative satisfies Hölder-like condition and the other is for functions that satisfies a Smale condition, which includes a substantial class of analytic functions. Some preliminaries numerical experiments illustrating the applicability of the proposed method for medium and large problems are also presented.
منابع مشابه
On the convergence of an inexact Gauss-Newton trust-region method for nonlinear least-squares problems with simple bounds
We introduce an inexact Gauss-Newton trust-region method for solving bound-constrained nonlinear least-squares problems where, at each iteration, a trust-region subproblem is approximately solved by the Conjugate Gradient method. Provided a suitable control on the accuracy to which we attempt to solve the subproblems, we prove that the method has global and asymptotic fast convergence properties.
متن کاملIndefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems
An inexact Newton algorithm for large sparse equality constrained non-linear programming problems is proposed. This algorithm is based on an indefinitely preconditioned smoothed conjugate gradient method applied to the linear KKT system and uses a simple augmented Lagrangian merit function for Armijo type stepsize selection. Most attention is devoted to the termination of the CG method, guarant...
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملOn nonlinear generalized conjugate gradient methods
where F (ξ) is a nonlinear operator from a real Euclidean space of dimension n or Hilbert space into itself. The Euclidean norm and corresponding inner product will be denoted by ‖·‖1 and (·, ·)1 respectively. A general different inner product with a weight function and the corresponding norm will be denoted by (·, ·)0 and ‖ · ‖ respectively. In the first part of this article (Sects. 2 and 3) w...
متن کاملAccelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations
Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general framework that includes many well-known techniques for solving linear and nonlinear systems, as well as new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017